241 research outputs found

    Coherent Integration of Databases by Abductive Logic Programming

    Full text link
    We introduce an abductive method for a coherent integration of independent data-sources. The idea is to compute a list of data-facts that should be inserted to the amalgamated database or retracted from it in order to restore its consistency. This method is implemented by an abductive solver, called Asystem, that applies SLDNFA-resolution on a meta-theory that relates different, possibly contradicting, input databases. We also give a pure model-theoretic analysis of the possible ways to `recover' consistent data from an inconsistent database in terms of those models of the database that exhibit as minimal inconsistent information as reasonably possible. This allows us to characterize the `recovered databases' in terms of the `preferred' (i.e., most consistent) models of the theory. The outcome is an abductive-based application that is sound and complete with respect to a corresponding model-based, preferential semantics, and -- to the best of our knowledge -- is more expressive (thus more general) than any other implementation of coherent integration of databases

    Encoding argument graphs in logic

    Get PDF
    International audienceArgument graphs are a common way to model argumentative reasoning. For reasoning or computational purposes, such graphs may have to be encoded in a given logic. This paper aims at providing a systematic approach for this encoding. This approach relies upon a general, principle-based characterization of argumentation semantics

    Computing Consensus: A Logic for Reasoning About Deliberative Processes Based on Argumentation

    Get PDF
    Argumentation theory can encode an agent’s assessment of the state of an exchange of points of view. We present a conservative model of multiple agents potentially disagreeing on the views presented during a process of deliberation. We model this process as iteratively adding points of view (arguments), or aspects of points of view. This gives rise to a modal logic, deliberative dynamic logic, which permits us to reason about the possible developments of the deliberative state. The logic we propose applies to all natural semantics of argumentation theory. Furthermore, under a very weak assumption that the consensus considered by a group of agents is faithful to their individual views, we show that model checking these models is feasible, as long as the argumentation frameworks, which may be infinite, does not have infinite branching.acceptedVersio

    Weak pairwise correlations imply strongly correlated network states in a neural population

    Get PDF
    Biological networks have so many possible states that exhaustive sampling is impossible. Successful analysis thus depends on simplifying hypotheses, but experiments on many systems hint that complicated, higher order interactions among large groups of elements play an important role. In the vertebrate retina, we show that weak correlations between pairs of neurons coexist with strongly collective behavior in the responses of ten or more neurons. Surprisingly, we find that this collective behavior is described quantitatively by models that capture the observed pairwise correlations but assume no higher order interactions. These maximum entropy models are equivalent to Ising models, and predict that larger networks are completely dominated by correlation effects. This suggests that the neural code has associative or error-correcting properties, and we provide preliminary evidence for such behavior. As a first test for the generality of these ideas, we show that similar results are obtained from networks of cultured cortical neurons.Comment: Full account of work presented at the conference on Computational and Systems Neuroscience (COSYNE), 17-20 March 2005, in Salt Lake City, Utah (http://cosyne.org
    • …
    corecore